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bstract

Within the pharmaceutical industry, method transfers are now commonplace during the life cycle of an analytical method. Setting acceptance
riteria for analytical transfers is, however, much more difficult than usually described. Criteria which are too wide may lead to the acceptance
f a laboratory providing non-equivalent results, resulting in bad release/reject decisions for pharmaceutical products (a consumer risk). On the
ontrary, criteria which are too tight may lead to the rejection of an equivalent laboratory, resulting in time costs and delay in the transfer process
an industrial risk). The consumer risk has to be controlled first.

But the risk does depend on the method capability (tolerance to method precision ratio).
Analytical transfers were simulated for different scenarios (different method capabilities and transfer designs, 10,000 simulations per test). The

esults of the simulations showed that the method capability has a strong influence on the probability of success of its transfer. For the transfer
esign, the number of independent analytical runs to be performed on a same batch has much more influence than the number of replicates per
un, especially when the inter-day variability of the method is high.

A classic descriptive approach for analytical method transfer does not take into account the variability of the method, and therefore, no risks are

ontrolled.

Tools for designing analytical transfers and defining a new descriptive acceptance criterion, which take into account the intra- and inter-day
ariability of the method, are provided for a better risk evaluation by non-statisticians.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Analytical method transfer is defined as the complete process
rom the decision to transfer the method to another labora-
ory (called the Receiver) up to the official qualification of the
eceiver by the laboratory that masters the method (called the
ender). This qualification will ensure that results obtained by

he Receiver will be reliable.
Analytical transfer is now fully integrated into the life cycle

f an analytical method in the pharmaceutical industry. How-

ver, even though the methodology is well described in ICH
uidelines for a validation [1], no official guideline exists for a
ransfer methodology in pharmaceutical analysis.

∗ Tel.: +33 5 62 14 73 15; fax: +33 5 62 14 73 10.
E-mail address: gerald.defontenay@avogadro.fr.
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C assay; Monte Carlo simulations for risk analysis

According to the ICH Q9 guideline [1], risk analysis should
e integrated into a transfer process. Setting acceptance criteria
or an analytical transfer, however, is much more difficult than
sually described. Some working groups in the pharmaceutical
ndustry have offered different transfer methodologies (SFSTP
2] and ISPE [3]) for handling analytical transfer.

In general, analysis results on the same batch, obtained by
he participating laboratories, are compared in terms of mean
esults and variability (in this paper, only the comparison of
ean results is discussed). Statistical tools are available for data

nterpretation, however no tools are available for setting accep-
ance criteria and assessing their impact on the risks related to
nalytical transfer. Kringle et al. [4] described the different risks

hat have to be managed during the transfer, and compared the
fficacy of different approaches for this risk control.

Criteria which are too wide may lead to the acceptance of a
aboratory generating non-equivalent results (called the “poor”
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aboratory), resulting in bad release/reject decisions for phar-
aceutical products (consumer risk = type I risk). Alternatively,

riteria which are too tight may lead to the rejection of an equiv-
lent laboratory (called the “good” laboratory), resulting in time
osts and delay in the transfer process (industrial risk = type II
isk). The most important risk to be taken into account is, obvi-
usly, the consumer risk. The industrial risk should not, however,
e neglected.

With regards to the statistical tools, the most common
pproach (the “difference approach” with a Student’s t-test) is
till widely used within analytical laboratories, even though its
nadequacy for analytical transfer has been proven (no control
f the consumer risk) [2,4].

Equivalence tests are often offered as the alternative to the
lassical approach. This methodology permits a good control
f the consumer risk, however it may also lead to an unaccept-
ble industrial risk [4,5] that can only be partially controlled
y multiplying the number of independent analytical runs to be
erformed in the transfer.

More sophisticated statistical approaches, with a full risk
nalysis, have also been described [6,7], but are not always easily
pplicable within laboratories lacking statisticians.

Where there are no statisticians available, the descriptive
pproach is generally used. This approach relies on a compari-
on of both the bias observed between the two laboratories and
he variability observed in the receiving laboratory up to the
imit values (acceptance criteria). With the classical descrip-
ive approach, neither the type I nor type II risks are controlled
2,4,7].

This paper describes a new descriptive approach for analyti-
al transfers and provides calculation tools to analysts in order
o evaluate the main risks related to analytical transfers and to
et one unique acceptance criteria according to those risks. This
cceptance criterion, for the difference observed between two
aboratories, which takes into account the method variability,
s designed for each method to be validated. Different scenar-
os have therefore been defined, taking into account the results
f the validation of the method to be transferred (capability of
he method, repeatability and intermediate precision results).
or each scenario, the results of the simulation of thousands of
nalytical transfers, performed using various assumptions, are
rovided. The utilisation of these results in order to undertake
n analytical transfer with a non-statistical approach, but with a
ood evaluation of the risks, is described.

. Theory

.1. Variability of analytical methods

The variability of a method can be separated into:

(a) “intra-day” variations, characterised by σ̂2
w, the estimated

within run variance, and by the repeatability Relative Stan-

dard Deviation (RSDr = σ̂w/μ̂, μ̂ being the estimated mean
content value). These variations are usually calculated from
one analytical run with several replicates for one batch,
performed by one analyst on one equipment.
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b) “inter-day” variations, characterised by σ̂2
B, the estimated

between run variance. These “inter-day” variations are usu-
ally calculated from independent analytical runs, performed
by different analysts, on different equipment. Other sources
of variation may be added.

The total variability of a method within a laboratory, esti-
ated during the method validation, is characterised by the

ntermediate precision Relative Standard Deviation (RSDip =
σ̂w + σ̂B)/μ̂) that takes into account the intra- and inter-days
ariations.

The R.S.D. ratio of a method (ratio between RSDr and RSDip,
etermined during the validation) is an important characteristic
or setting the best way to manage an analytical method transfer.
epeating analyses within the same run only offers additional

nformation if this ratio is close to 1.0. If this is not the case, it
s much more powerful to perform several independent analyti-
al runs instead of performing several analyses within the same
nalytical run.

A survey performed on 77 validation reports of analytical
ethods (HPLC, GC, titrimetric, colorimetric and complexo-
etric assays were involved) indicated that this ratio usually

aried between 0.6 and 1.0. Some methods, however, showed a
ery high inter-day variability (with ratios varying from 0.1 to
.5).

When this ratio for an analytical method is very low, it is
lear that only a large number of independent determinations of
ontent will give a good estimation of the true value for a given
ample.

Additional variations, due to biases existing within each
aboratory, may be estimated between laboratories. Usually,
owever, a method transfer is the first opportunity to have an
stimation of the reproducibility of a method since the eval-
ation of this parameter is not required by ICH guidelines
1].

.2. Capability of analytical methods

The variability of an analytical method can be compared to
he product specifications in order to check its capability. This
apability concept has been widely described in the literature,
ut its definition varies from one source to another [8,9].

In this article, the capability of an analytical method is defined
nd calculated as described in Eq. (1) [9]:

p = TI

6σ
(1)

TI is the tolerance interval of a measurement, and σ is the
tandard error of the measurement. When results are centred
n 100%, which is the case for analytical methods for active
ngredient or preservative content, Cp can be estimated from
alidation results and from the specifications of the compound
o be analysed: TI is then the difference between the higher and

ower specifications, and σ can be replaced by the intermediate
recision R.S.D. (RSDip) (or, in order to avoid any underesti-
ation of the variability of the method, by the upper value of

he confidence interval calculated for RSDip).
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Table 1
Identification of the 17 scenarios used for the simulations of analytical method transfers, with different method capabilities and different R.S.D. ratios, ratio between
repeatability R.S.D. (RSDr) and intermediate precision R.S.D. (RSDip) of the method to be transferred (determined during the validation, see explanations in Section
2)

R.S.D. ratio (RSDr/RSDip) Method capability value (Cp)

1.0 1.33 1.5 2.0 2.5

0.4 Scenario 1 Scenario 5 – – –
0 6
0 7
1 8
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.6 Scenario 2 Scenario

.8 Scenario 3 Scenario

.0 Scenario 4 Scenario

It can be noted that with this definition, the capability of a
ethod is the same (Cp = 2.0) when RSDip = 0.33% with spec-

fications set at 98–102% (TI = 4%) or when RSDip = 0.83%
ith specifications set at 95–105% (TI = 10%) and when
SDip = 1.67% with specifications set at 90–110% (TI = 20%).

As defined, a ‘six sigma’ process achieves a Cp value of at
east 2.0 [9]. The survey of the 77 method validation reports
ndicated that most of the Cp values are between 0.5 and 2.0 for

ethods used in pharmaceutical analysis. But for some methods,
p could be as high as 9.3. These results showed a wide range
f analytical variation, depending on the method and on the
ompound being analysed.

The simulations performed focussed on methods with Cp val-
es within the most common range: from 1.0 to 2.5. Even though
uch methods are often used for pharmaceutical analysis, meth-
ds with Cp values inferior to 1.0 were not taken into account,
ue to their lack of capability. In these cases, a new method with
greater capability should be developed and validated in order

o obtain more reliable results.
Methods with Cp values superior to 2.5 could be considered

s having Cp = 2.5.

. Experimental

.1. Simulations of analytical transfers

.1.1. Definition of 17 scenarios
Ten thousand analytical transfers were simulated for each of

7 different scenarios (see Tables 1 and 2), representative of

he diversity of analytical methods to be transferred (different

ethod capabilities and R.S.D. ratios, see Section 2.).
Table 2 describes, for the 17 defined scenarios, the R.S.D.

alues for an analytical method used for the determination

able 2
epeatability R.S.D. values (for tolerance interval = 10%) corresponding to the
7 scenarios defined in Table 1

.S.D. ratio Method capability value (Cp)

1.0 1.33 1.5 2.0 2.5

.4 0.67 0.50 – – –

.6 1.00 0.75 0.67 0.50 0.40

.8 1.33 1.00 0.89 0.67 0.53

.0 (RSDr = RSDip) 1.67 1.25 1.11 0.83 0.67

.S.D. ratio is the ratio between repeatability R.S.D. (RSDr) and intermediate
recision R.S.D. (RSDip) of the method to be transferred.
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Scenario 9 Scenario 12 Scenario 15
Scenario 10 Scenario 13 Scenario 16
Scenario 11 Scenario 14 Scenario 17

f an active substance with specifications of 95–105% (cor-
esponding to a tolerance interval TI = 10%). It can be noted
hat methods having RSDip over 1.67% are considered as lack-
ng capability, and were not taken into account during the
imulations.

.1.2. Design of the simulations
Simulations were designed to represent a classic analytical

ethod transfer design: the same batch of the product to be
nalysed was provided to both the Sender and Receiver lab-
ratories. Within each laboratory, independent analytical runs
ere performed (in order to evaluate inter-run variability due to

hanges of mobile phase, calibration, equipment, analyst, day,
tc.) with several replicates per analytical run (different weigh-
ng and preparation of the product to be analysed). For each
cenario, n independent analytical runs with p replicates per
un were simulated in the 2 different laboratories (Receiver and
ender), with n and p varying as follows:

= 2, 3, 4, 5, 6 and 7

= 3, 4, 5 and 6.

For each simulated analytical run, within run and between
un variability were taken into account.

For each replicate of each analytical run, and for each
aboratory, the simulated content value was taken at random
rom the variable N((100 − X̄i), RSDr), X̄i being simu-
ated, for each analytical run from a variable N(0, σ̂B) in
rder to take into account the inter-run variability of the
ethod.
After each simulation, the variable corresponding to observed

ias Biasobs (difference between the mean of n × p content val-
es at the Sender and Receiver laboratories) was studied.

Observed bias was due only to the differences in evaluation
f the actual content in the sample studied.

These simulations assumed that the real bias Biasreal between
he 2 laboratories was null. Evaluation of the impact of a real
ias was then performed by calculation only.

.2. Distribution fitting from simulated data
For each simulation, the 10,000 values observed for the vari-
ble Biasobs fitted to a Normal distribution. For each set of
imulation, the standard error of the simulated variable was
etermined (and named σobs).
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Table 3
Calculated standard error (σobs) of the simulated variable “observed bias” (Biasobs) for a method with capability Cp = 1.0 (tolerance interval = 10%)

R.S.D. ratio Number of replicates per run (p) Number of independent analytical runs (n)

2 3 4 5 6 7

0.4 3 1.57 1.29 1.12 1.00 0.91 0.84
4 1.55 1.27 1.11 0.99 0.90 0.83
5 1.54 1.27 1.10 0.98 0.89 0.83
6 1.54 1.26 1.10 0.98 0.89 0.82

0.6 3 1.46 1.18 1.03 0.92 0.84 0.78
4 1.43 1.16 1.01 0.91 0.83 0.77
5 1.42 1.15 1.00 0.90 0.82 0.76
6 1.41 1.14 1.00 0.89 0.82 0.75

0.8 3 1.28 1.05 0.90 0.80 0.73 0.68
4 1.22 0.99 0.86 0.76 0.70 0.64
5 1.18 0.96 0.83 0.74 0.67 0.62
6 1.16 0.94 0.81 0.72 0.66 0.61

1.0 3 0.97 0.80 0.69 0.62 0.56 0.52
4 0.85 0.69 0.60 0.53 0.48 0.45
5 0.76 0.62 0.54 0.48 0.44 0.40
6 0.69 0.56 0.49 0.44 0.40 0.37
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.S.D. ratio is the ratio between repeatability R.S.D. (RSDr) and intermediate p

.3. Software

The simulations, using the Monte Carlo algorithms,
nd the distribution fitting were performed with Crystal
all software (version 2000.51, edited by Decisioneering,
ww.crystalball.com).
Calculations were performed by Microsoft® Excel 2000, with
he NORMDIST function.
All the calculations were performed with the following

ssumption: TI = 10.0% (corresponding to 95.0–105.0% spec-
fications).

σ

t
d
(

able 4
alculated standard error (σobs) of the simulated variable “observed bias” (Biasobs) f

.S.D. ratio Number of replicates per run (p) Number of indepen

2 3

.4 3 1.18 0.9
4 1.17 0.9
5 1.17 0.9
6 1.16 0.9

.6 3 1.07 0.8
4 1.05 0.8
5 1.04 0.8
6 1.03 0.8

.8 3 0.94 0.7
4 0.89 0.7
5 0.86 0.7
6 0.84 0.6

.0 3 0.72 0.5
4 0.63 0.5
5 0.56 0.4
6 0.52 0.4

.S.D. ratio is the ratio between repeatability R.S.D. (RSDr) and intermediate precis
ion R.S.D. (RSDip) of the method to be transferred.

. Results of the simulations

Different simulation scenarios were performed, according to
alues given in Table 2 (with TI = 10%).

For each of the 10,000 simulations, the value of Biasobs
as calculated. The observed values fitted to a Normal dis-

ribution, centred as assumed on 0, with a calculated variance

2
obs depending on the capability of the method (Cp) and on

he number of determinations (n and p). These values of σobs,
etermined by distribution fitting for each set of simulations
for each scenario and each of the n and p values) are given in

or a method with capability Cp = 1.33 (tolerance interval = 10%)

dent analytical runs (n)

4 5 6 7

6 0.83 0.75 0.69 0.64
5 0.83 0.74 0.68 0.63
5 0.82 0.74 0.68 0.63
4 0.82 0.73 0.68 0.63

9 0.77 0.69 0.63 0.58
7 0.75 0.67 0.61 0.57
6 0.74 0.67 0.61 0.56
5 0.74 0.66 0.60 0.56

7 0.66 0.60 0.54 0.50
3 0.63 0.57 0.51 0.47
0 0.61 0.55 0.50 0.46
9 0.60 0.54 0.49 0.45

9 0.51 0.46 0.41 0.38
1 0.44 0.40 0.36 0.33
6 0.40 0.36 0.32 0.30
2 0.37 0.33 0.30 0.27

ion R.S.D. (RSDip) of the method to be transferred.

http://www.crystalball.com/
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Table 5
Calculated standard error (σobs) of the simulated variable “observed bias” (Biasobs) for a method with capability Cp = 1.5 (tolerance interval = 10%)

R.S.D. ratio Number of replicates per run (p) Number of independent analytical runs (n)

2 3 4 5 6 7

0.6 3 0.97 0.79 0.69 0.62 0.57 0.53
4 0.95 0.77 0.68 0.61 0.55 0.51
5 0.94 0.77 0.67 0.60 0.54 0.51
6 0.93 0.76 0.66 0.59 0.54 0.50

0.8 3 0.84 0.69 0.59 0.53 0.48 0.45
4 0.80 0.65 0.56 0.50 0.46 0.43
5 0.77 0.63 0.54 0.48 0.44 0.41
6 0.75 0.62 0.53 0.47 0.43 0.40

1.0 3 0.65 0.53 0.46 0.41 0.37 0.35
4 0.57 0.46 0.40 0.36 0.32 0.30
5 0.50 0.41 0.35 0.32 0.29 0.27
6 0.46 0.37 0.32 0.29 0.26 0.24

R.S.D. ratio is the ratio between repeatability R.S.D. (RSDr) and intermediate precision R.S.D. (RSDip) of the method to be transferred.

Table 6
Calculated standard error (σobs) of the simulated variable “observed bias” (Biasobs) for a method with capability Cp = 2.0 (tolerance interval = 10%)

R.S.D. ratio Number of replicates per run (p) Number of independent analytical runs (n)

2 3 4 5 6 7

0.6 3 0.72 0.58 0.51 0.45 0.42 0.39
4 0.70 0.57 0.50 0.44 0.41 0.38
5 0.69 0.56 0.49 0.44 0.40 0.38
6 0.69 0.56 0.49 0.43 0.40 0.37

0.8 3 0.62 0.51 0.44 0.39 0.36 0.33
4 0.59 0.48 0.42 0.37 0.34 0.32
5 0.57 0.47 0.40 0.36 0.33 0.31
6 0.56 0.46 0.40 0.35 0.32 0.30

1.0 3 0.48 0.39 0.34 0.30 0.28 0.25
4 0.42 0.34 0.29 0.26 0.24 0.22
5 0.37 0.30 0.26 0.24 0.22 0.20
6 0.34 0.27 0.24 0.21 0.20 0.18

R.S.D. ratio is the ratio between repeatability R.S.D. (RSDr) and intermediate precision R.S.D. (RSDip) of the method to be transferred.

Table 7
Calculated standard error (σobs) of the simulated variable “observed bias” (Biasobs) for a method with capability Cp = 2.5 (tolerance interval = 10%)

R.S.D. ratio Number of replicates per run (p) Number of independent analytical runs (n)

2 3 4 5 6 7

0.6 3 0.59 0.48 0.41 0.37 0.34 0.31
4 0.58 0.47 0.41 0.36 0.33 0.31
5 0.57 0.47 0.40 0.36 0.33 0.31
6 0.57 0.46 0.40 0.36 0.33 0.30

0.8 3 0.51 0.42 0.36 0.32 0.30 0.27
4 0.49 0.40 0.34 0.31 0.28 0.26
5 0.47 0.39 0.33 0.30 0.27 0.25
6 0.46 0.38 0.33 0.29 0.27 0.24

1.0 3 0.39 0.32 0.28 0.25 0.22 0.21
4 0.34 0.28 0.24 0.21 0.19 0.18
5 0.30 0.25 0.21 0.19 0.17 0.16
6 0.28 0.23 0.20 0.17 0.16 0.15

R.S.D. ratio is the ratio between repeatability R.S.D. (RSDr) and intermediate precision R.S.D. (RSDip) of the method to be transferred.
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ables 3–7 (one table per method capability value, as defined in
able 1).

In can be observed, in Tables 3–7, that values of σobs were
trongly dependant on the Cp value and on the RSDr/RSDip
atio. The influence of the number of independent analytical
uns, n, is also very important. An increase of the number of repli-
ates, p, may have a slight effect, but only for high RSDr/RSDip
atios (ratio ≥ 0.8).

. Discussion

As explained in Section 2, the calculations and interpreta-
ion of the simulation data can be extrapolated to methods with
ifferent TI. For example, for a method used for preservatives
specifications set at 90.0–110.0%), the tolerance interval is
oubled (TI = 20.0%). The σobs values in Tables 3–7 are dou-
led, and the acceptance criteria can then also be doubled. The
orresponding probabilities of success will thus be unchanged.

.1. Simulated data interpretation

.1.1. Graphical example for Scenario 14
For Scenario 14 (see Table 1) the analytical method had a Cp

alue of 2.0. This method could then be considered as a “Six
igma process”, ensuring very reliable results. One could feel
onfident about the results of an analytical transfer in this case.

Fig. 1 illustrates, for Scenario 14, the results of the 10,000
imulations and, from these results, the probability of success of
n analytical transfer with a Receiver laboratory having a null
ctual bias, with an acceptance criteria (AC) set at 1.0%. The
ark zone (probability of accepting the laboratory, which is a
good” one since the actual bias is null) represented 96.4% of
he 10,000 analytical transfers.

In this case, the probability of refusing a “good” laboratory
grey zone in Fig. 1) is limited to 3.6%.

Fig. 2 illustrates, for an actual bias (Biasreal) set at 0.5%, the

ame probabilities: the grey zone represents 14.9% of the 10,000
imulations. The probability of rejecting the laboratory is nearly
5%, with an actual bias of 0.5%, which would nevertheless be
onsidered as analytically acceptable.

ig. 1. Bias observed between sender and receiver laboratories for 10,000 sim-
lations of analytical method transfers with Scenario 14 (see Table 1), with 2
ndependent analytical runs and 3 replicates per run). The dark area represents
he probability of accepting the receiving laboratory (96.4%) when acceptance
riteria is set at 1.0% and when the actual bias between both laboratories is null.

t
t
a
a
c
I
p
l
t

5

5

i
T

ndependent analytical runs and 3 replicates per run). The dark area represents
he probability of accepting the receiving laboratory (85.1%) when acceptance
riteria is set at 1.0% and when the actual bias between both laboratories is set
t 0.5%.

It can easily be seen, from Figs. 1 and 2, that for a real bias of
.0% between the two laboratories, 50% of the transfers will be
onsidered as acceptable while the other 50% would generate a
efusal of the receiving laboratory.

.1.2. General interpretation
The Normal distribution fitting to Biasobs data obtained by

imulation has a standard error, σobs. From these σobs values
see Tables 3–7) are calculated, depending on the acceptance
riteria and on the real bias, the probability of accepting a poor
aboratory (type I error) and, on the other hand, the probability
f refusing a good laboratory (type II error).

The probability of success of an analytical transfer (proba-
ility of accepting the receiving laboratory), for an acceptance
riteria, AC and an actual bias, Biasreal is the area of the Normal
istribution N(0, σobs) between the values (−AC + Biasreal) and
+AC + Biasreal).

This probability P can be calculated with the NORMDIST
unction in Excel, as described in Eq. (2)

= NORMDIST(AC + Biasreal, σobs, 0, true)

− NORMDIST(−AC + Biasreal, σobs, 0, true) (2)

In Eq. (2), σobs is dependant on the method capability and
he transfer design (Cp, n and p, as shown in Tables 3–7), and
he final calculation depends on the acceptance criteria and the
ctual bias Biasreal between the laboratories. When Biasreal is
bove the acceptance criteria, the probability calculated can be
onsidered as the risk of accepting a “poor” laboratory (type
risk), and when Biasreal is below the acceptance criteria, the
robability calculated is the probability of accepting a “good”
aboratory (from which can be calculated the risk of refusing
his good laboratory, type II risk).

.2. Probability of success and risk analysis
.2.1. Critical review of the classic descriptive approach
With the classic descriptive approach, the acceptance criteria

s set regardless of the variability of the method to be transferred.
able 8 represents the probability of success of an analytical
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Table 8
Probability (%) of concluding that bias observed during the transfer is acceptable
(with acceptance criteria set at 2.0%), depending on the calculated standard error
σobs (fitted from the simulated variable “observed bias”, Biasobs) and for different
real bias (Biasreal) between sender and receiver laboratories

Biasreal Standard error of the variable Biasobs, σobs

0.20 0.40 0.70 1.00 1.20 1.40

0 >99 >99 >99 95 90 85
0.5 >99 >99 98 93 88 82
1.0 >99 99 92 84 79 75
1.5 99 89 76 69 66 63
2.0 50 50 50 50 50 50
2.2 16 31 39 42 43 44
2.5 1 11 24 31 34 36
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.0 <1 1 8 16 20 24

.5 <1 <1 2 7 11 14

ethod transfer for different σobs values, representative of those
resented in Tables 3–7, when the acceptance criteria is set at
.0 (as recommended in ref. [3]).

When the real bias Biasreal between the Sender and Receiver
aboratories is equal to the acceptance criteria, the probabil-
ty of success is 50%, as expected. When Biasreal is very
lightly over the acceptance criteria (2.2), it should be noted
hat the type I risk (consumer risk), which is already above
5% with σobs = 0.20, increases dramatically with the σobs val-
es. When σobs is at or above 1.0, the risk of accepting a
aboratory with an unacceptable Real bias of 3.5% is not negli-
ible. On the other hand, the type II risk also increases with
obs values, and this industrial risk should not be neglected
ither.

These results, which confirm those presented in the litera-
ure [4,5], illustrate the absence of risk control with the classic
escriptive approach, and show that the transfer study design
number of independent analytical runs and number of repli-
ates per run) should be adapted to the variability of the method
o be transferred (characterised here by its capability Cp and the
SDr/RSDip ratio).
Analysis of the influence of the number of independent ana-
ytical runs (n) and of the method capability on the probability of
uccess of the transfer was therefore analysed for the simulated
ata.

s
T
w
h

able 9
robability of success for an analytical method transfer for Scenario 10 (see Table 1)
eceiver laboratories (Biasreal), with the number of independent run (n) varying from

iasreal AC = 1.0% AC = 2.0%

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3

77 85 91 94 98 >99
.5 69 75 80 83 96 99
.0 49 49 50 50 88 93
.5 27 23 20 17 72 77
.0 12 7 5 3 50 50
.2 8 4 2 1 41 39
.5 4 1 1 <1 28 23
.0 1 <1 <1 <1 12 7
.5 <1 <1 <1 <1 4 1
ig. 3. Influence of the number of analytical runs (n = 2, 4 or 7, with 3 replicates
er run) on the probability of success of an analytical transfer (for Scenario 10,
ee Table 1). Acceptance criteria is set at 2.0%.

.2.2. Influence of increasing the number of analytical runs
n) on the probability of success of an analytical transfer

Fig. 3 illustrates, for Scenario no. 10 (one of the most com-
on scenarios, according to a survey of 77 validation reports)
ith TI = 10.0% and p = 3, the influence of increasing n on the
robability of success for a transfer, when the acceptance criteria
s set at 2.0 (using Eq. (2)).

It can be noted, in the example in Fig. 3 (and in Table 9), that
ncreasing n from 2 to 4 ensures a much better decision for the
nalytical transfer. Increasing n above 4 will decrease both type
and type II risks, although this evolution is less when n > 4.

This result has a direct influence on the study design.
Setting n = 4 can be managed, within each laboratory, as fol-

ows: 2 different analysts perform p replicates at 2 different
imes. Furthermore, crossing equipment between the two ana-
ysts between run 1 and run 2 will allow a better estimation of
he whole laboratory variability, and therefore lead to a good
ransfer decision.

.2.3. Influence of the method capability on the probability
f success of an analytical transfer

In Fig. 4, the influence of the Cp value on the probability of

uccess of an analytical transfer is represented (for n = 4, p = 3,
I = 10%, RSDr/RSDip = 0.8 and AC = 2.0%). This parameter,
hich has to be evaluated before setting the acceptance criteria,
as a very strong influence on the transfer results.

, depending on the acceptance criteria and the real bias between the sender and
2 to 5, and 3 replicates per run

AC = 3.0%

n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

>99 >99 >99 >99 >99 >99
>99 >99 >99 >99 >99 >99

95 97 99 >99 >99 >99
80 83 96 99 99 >99
50 50 88 93 95 97
37 35 83 88 91 94
20 17 72 77 80 83

5 3 50 50 50 50
1 <1 28 23 20 17
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Fig. 4. Influence of capability of the method on the probability of success of
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σobs results obtained during the simulations (Tables 3–7) were
computed using Eq. (2) with n = 4, AC varying from 1.1 to 2.7
and with Biasreal set at 3.0%. The highest AC values allow-

Table 10
Acceptance criteria values to be set for an analytical transfer (n = 4, TI = 10.0%)
for the 17 scenarios (see Table 1), for having type I risk at or below 5.0% for
Biasreal = 3.0%

R.S.D. ratio Number of
replicates per
run (p)

Method capability value (Cp)

1.0 1.33 1.5 2.0 2.5

0.4 3 1.1 1.6 – – –
4 1.1 1.6 – – –
5 1.1 1.6 – – –
6 1.1 1.6 – – –

0.6 3 1.2 1.7 1.8 2.1 2.3
4 1.3 1.7 1.8 2.1 2.3
5 1.3 1.7 1.8 2.1 2.3
6 1.3 1.7 1.9 2.1 2.3

0.8 3 1.5 1.9 2.0 2.2 2.4
4 1.5 1.9 2.0 2.3 2.4
5 1.6 1.9 2.1 2.3 2.4
6 1.6 2.0 2.1 2.3 2.4

1.0 3 1.8 2.1 2.2 2.4 2.5
4 2.0 2.2 2.3 2.5 2.6
n analytical transfer (with 4 analytical runs of 3 replicates per laboratory).
epeatability to intermediate precision R.S.D. ratio is set at 0.8. Acceptance
riteria is set at 2.0%.

The higher the value of Cp, the higher the probability of the
ransfer’s success.

Methods with a low Cp value will induce high type I and type
I risk levels, and the analytical transfer should, in that case, be
eplaced by a new method validation, after redevelopment of a
ethod having a better capacity, as described by Dejaegher et

l. [10].

.2.4. Influence of acceptance criteria on the probability of
uccess of an analytical transfer

In Table 9, the calculation results for Scenario 10 (same
ssumptions as for Section 5.2.2 and Fig. 3) are presented in
nother manner, which can give a decision tool to those setting
p an analytical method transfer. These results are comparable
ith those described by Kringle et al. [4], with a scenario similar

o Scenario 10.
Setting a tight acceptance criteria (AC = 1.0%) will ensure

rejection of any poor laboratory (probability of accepting a
aboratory with an actual bias Biasreal ≥ 3.0% is at or below
%). But the probability of accepting a good laboratory with
iasreal = 0.5% drops down to 69% (for n = 2).

Setting a wide acceptance criteria (AC = 3.0%) will ensure
n acceptance of all the laboratories with Biasreal ≤ 1.0%, but
ith a 50% risk of accepting laboratories with Biasreal = 3.0%,
hich is unacceptable with respect to the consumer

isk.
Setting the acceptance criteria AC = 2.0% (for the quoted

xample) with n = 4 ensures a low probability for both type I
nd type II risks.

.3. Setting acceptance criteria with a new descriptive
pproach

For a method with TI = 10.0%, an acceptance criteria of 3.0%
s commonly used in the pharmaceutical industry, as described
n the literature [2].
Having a real bias at or over 3.0% may indeed lead to a
umber of false negative results (out of specification results,
roducer risk) or, even worse, to false positive results (release
f out of specification batches, consumer risk).

R
p
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When used within a laboratory, this 3.0% acceptance criteria
s generally understood as follows: any laboratory with a real
ias over 3.0% will be rejected, and laboratories with a real bias
elow 3.0% will be accepted. But, as shown in Tables 8 and 9,
t is unfortunately impossible to estimate the real bias from the
ias observed during an analytical transfer. The mean values
btained within each laboratory are only an estimation of the
rue value. The variability of the difference is therefore higher
han the variability within each laboratory.

The only result that can be predicted is the probability of
ccepting a laboratory where the actual bias Biasreal = AC, the
cceptance criteria, which is equal to 50%, as shown in Fig. 3.

This result shows that the acceptance criteria must be set
elow the maximum acceptable real bias.

Since the aim of a transfer is to limit the risk of accepting a
oor laboratory (taken here as a laboratory with a real bias at
r above 3.0%), with a limitation of consumer risk (type I risk)
elow 5%, it is important, for each analytical transfer, to analyse
he results of the validation of the method to be transferred.

The analysis of the validation results allows the determination
f the Cp and of the RSDr/RSDip ratio, in order to choose the
cenario (Tables 1 and 2) corresponding to the method to be
ransferred.

Analysis of the Normal distribution N(0, σobs), as shown
n Fig. 3, and/or the calculation of the probabilities of success
ccording to Eq. (2), will thus allow the definition of an accep-
ance criteria AC (below the maximum acceptable real bias of
.0%) in order to limit the type I risk at or below 5.0%.

This exercise was performed for each of the 17 scenarios:
5 2.1 2.3 2.4 2.5 2.6
6 2.2 2.3 2.4 2.6 2.6

.S.D. ratio is the ratio between repeatability R.S.D. (RSDr) and intermediate
recision R.S.D. (RSDip) of the method to be transferred.
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Table 11
Probability of success for an analytical transfer with a laboratory having an
acceptable real bias of 0.5% (n = 4, TI = 10.0%) for the 17 scenarios (see Table 1).
A probability below 90% corresponds to a type II risk above 10%

R.S.D. ratio Number of replicates
per run (p)

Cp value

1.0 1.33 1.5 2.0 2.5

0.4 3 63 90 – – –
4 63 90 – – –
5 63 90 – – –
6 64 91 – – –

0.6 3 70 94 97 >99 >99
4 75 94 97 >99 >99
5 75 95 97 >99 >99
6 75 95 98 >99 >99

0.8 3 85 98 99 >99 >99
4 87 99 >99 >99 >99
5 90 99 >99 >99 >99
6 91 99 >99 >99 >99

1.0 3 97 >99 >99 >99 >99
4 99 >99 >99 >99 >99
5 >99 >99 >99 >99 >99
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[9] D. Johnston, Pharm. Technol. Eur. 15 (2003) 57–61.
6 >99 >99 >99 >99 >99

.S.D. ratio is the ratio between repeatability R.S.D. (RSDr) and intermediate
recision R.S.D. (RSDip) of the method to be transferred.

ng a probability of success at or below 5% are presented in
able 10.

It is noticeable that an increase of the number of replicates
er analytical run has a very low influence on the result, com-
ared to the influence of the capability of the method and of the
SDr/RSDip ratio, calculated from the validation results.

It is clear that setting a low AC value will not only limit type I
isk, but also increase type II risk. Therefore, at the AC level used,
he probability of success for a laboratory having an acceptable
eal bias Biasreal = 0.5% was calculated in order to evaluate this
ype II risk (producer risk). The results are presented in Table 11.

All the calculations presented here are assuming that the eval-
ation of the method variability during the method validation
calculation of RSDr and of RSDip) is reliable. The extent of
eliability may depend on the validation design, but is out of
he scope of this paper. Any additional data obtained during the
se of the method may confirm or consolidate the data obtained
uring the validation.

. Conclusion

The usual descriptive approach for an analytical transfer does
ot allow a powerful analysis of the different risks related to the

nalytical transfer, i.e. type I risk (risk of accepting a “poor”
aboratory, which may lead to a consumer risk) and type II risk
risk of refusing a good laboratory, which consumes time and
oney for the producer).

[

[
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Making simulations (or calculations from the results of the
imulations performed and described in Tables 3–7) before
etting descriptive acceptance criteria can lead to a precise esti-
ation of these risks, and therefore, is acceptable for authorities

nd for analytical laboratories.
A design with 4 analytical runs with 3 replicates per run may

e suitable for most of the methods to be transferred. The mean
esults of each laboratory will be compared to the acceptance
riteria defined for the bias observed between the laboratories
criteria that takes into account the method variability).

Furthermore, when designing the analytical transfer, sources
f variations such as analysts and equipment can be tested. The
ender laboratory can then have a good estimation of the global
ariability of the method in the Receiver laboratory. This vari-
bility can be expressed as RSDr and RSDip in the Receiver
aboratory, just as during a method validation, and the results can
lso be compared to descriptive acceptance criteria, as defined
y the different working groups of the pharmaceutical industry
2,3,11].

With this new descriptive approach, it is possible for the
ransfer team in charge of the analytical transfer to choose
he scenario that fits the validation results of the method to
e transferred, and to calculate from the results of the simu-
ations the acceptance criteria that best suits the purpose of the
ransfer.

This unique acceptance criterion already takes into account
he variability of the analytical method to be transferred, and is
herefore an easy decision tool for the transfer team.
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